Low-oriented nylon-6 fibers were drawn in a multistage drawing process, during which the number of drawing steps and the temperature of each step were changed. The physical properties of these fibers were measured and compared with the values predicted by a multiple-linear-regression model. Moreover, six input variables and four output variables were used in an artificial neural network (ANN) to establish the logical relationships between the inputs and outputs. Attempts were also made to determine the effective parameters for each physical property and explain the observed trends. The results showed that the models based on the ANN performed well and provided stable responses in predicting combined interactions between independent variables. Keywords: drawing process, artificial neural network, modeling, physical properties Malo orientirana vlakna najlon 6 so bila vle~ena z ve~stopenjskim postopkom, pri~emer se je pri vsakem vleku spreminjala stopnja vle~enja in temperatura. Izmerjene vrednosti teh vlaken so bile primerjane z vrednostmi, napovedanimi z modelom multivariantne linearne regresije. Poleg tega je bilo v umetni nevronski mre`i (ANN) uporabljenih {est vhodnih spremenljivk in {tiri izhodne, da bi ugotovili logi~ne odvisnosti med vhodnimi in izhodnimi spremenljivkami. Posku{alo se je ugotoviti u~inkovite parametere za vsako fizikalno lastnost in razlo`iti opa`ene tendence. Rezultati so pokazali, da so modeli na osnovi ANN dobri in ponujajo stabilne odgovore pri predvidevanju kombiniranih interakcij neodvisnih spremenljivk. Klju~ne besede: postopek vle~enja, umetna nevronska mre`a, modeliranje, fizikalne lastnosti