In practical engineering, the frequency splitting of Hemispherical Resonator Gyro (HRG) caused by uneven mass distribution seriously affects the precision of HRG. So, the inherent frequency is an important parameter of micro-Hemispherical Resonator Gyro (m-HRG). In the processing of hemispherical resonator, there are some morphological errors and internal defects in the hemispherical resonator, which affect the inherent frequency and the working mode of m-HRG, and reduce the precision and performance of m-HRG. In order to improve the precision and performance of m-HRG, the partial differential equation of the hemispherical resonator is solved, and the three-dimensional model using ANSYS software accurately reflected the actual shape is established in this paper. Then, the mode of hemispherical resonator in ideal state and uneven mass distribution state are simulated and analyzed. The frequency splitting mechanism of the hemispherical resonator is determined by calculation and demonstration, and the frequency splitting of the hemispherical resonator is suppressed by partial mass elimination. The results show that the absolute balance of energy can ensure the high-quality factor and the minimum frequency splitting of the hemispherical resonator. Therefore, during the processing of hemispherical resonator, the balance of mass should be achieved as much as possible to avoid various surface damage, internal defects and uneven mass distribution to guarantee the high-quality factor Q and minimum frequency splitting of hemispherical resonator.