<p>Gliomas são tumores cerebrais primários agressivos e invasivos, no qual o mais comum e maligno, glioblastoma multiforme, possui uma combinação de rápido crescimento e invasibilidade. Com o avanço na capacidade de processamento e armazenamento de dados, a utilização de métodos estocásticos para a simulação de problemas físicos reais vem se tornando cada vez mais frequentes. O objetivo do trabalho é simular computacionalmente o crescimento do glioma resolvendo uma equação de reação-difusão em 1D, pelo método de Crank-Nicolson e transpor essa solução para uma geometria 3D por meio do método do Cone Causal e de Monte Carlo. Os resultados obtidos fornecem informações da evolução do raio, concentração de células cancerosas, volume e uma visualização em 3D do tumor. Estes resultados encontrados se mostraram satisfatórios quando comparado com trabalhos que estudam o crescimento tumoral.</p><strong>Palavras chave</strong>: Equação de Reação-Difusão, Gliomas, Método do Cone Causal, Método de Monte Carlo, Método de Diferenças Finitas.