2023
DOI: 10.26434/chemrxiv-2023-ktscq
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Modeling Chemical Processes in Explicit Solvents with Machine Learning Potentials

Abstract: Solvent effects influence all stages of the chemical processes, modulating the stability of intermediates and transition states, as well as altering reaction rates and product ratios. However, accurately modelling these effects remains challenging. Here, we present a general strategy for generating reactive machine learning potentials (MLPs) to model chemical processes in solution. Our approach combines active learning with descriptor-based selectors and automation, enabling the construction of data-efficient … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 68 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?