Figure 1: With novel enhancements in both learning objective as well as the network architecture, our proposed nonlinear 3D morphable model enables, for the first time, regressing high-fidelity facial shape (geometry) and albedo (skin reflectence) by directly estimating model latent representations.
AbstractEmbedding 3 D morphable basis functions into deep neural networks opens great potential for models with better representation power. However, to faithfully learn those models from an image collection, it requires strong regularization to overcome ambiguities involved in the learning process. This critically prevents us from learning high fidelity face models which are needed to represent face images in high level of details. To address this problem, this paper presents a novel approach to learn additional proxies as means to side-step strong regularizations, as well as, leverages to promote detailed shape/albedo. To ease the learning, we also propose to use a dual-pathway network, a carefully-designed architecture that brings a balance between global and local-based models. By improving the nonlinear 3 D morphable model in both learning objective and network architecture, we present a model which is superior in capturing higher level of details than the linear or its precedent nonlinear counterparts. As a result, our model achieves state-of-the-art performance on 3 D face reconstruction by solely optimizing latent representations.