This paper presents the analogue simulation of a nonlinear liquid level system composed by two tanks; the system is controlled using the methodology of exact linearization via state feedback by cellular neural networks (CNNs). The relevance of this manuscript is to show how a block diagram representing the analogue modeling and control of a nonlinear dynamical system, can be implemented and regulated by CNNs, whose cells may contain numerical values or arithmetic and control operations. In this way the dynamical system is modeled by a set of local-interacting elements without need of a central supervisor.