2015
DOI: 10.1016/j.jssas.2013.06.001
|View full text |Cite
|
Sign up to set email alerts
|

Modeling minimum temperature using adaptive neuro-fuzzy inference system based on spectral analysis of climate indices: A case study in Iran

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

1
16
0
1

Year Published

2016
2016
2022
2022

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 24 publications
(18 citation statements)
references
References 15 publications
1
16
0
1
Order By: Relevance
“…(2008) reported that ANN models had desirable performance for the same time interval [9]. Daneshmand et al (2013) also suggested that ANFIS had desirable performance in the prediction of daily minimum temperatures of Mashhad City located in the east of Iran [12]. Similar to the previous studies, in this study, also the artificial intelligence models provided desirable performance.…”
Section: One Month Forecasting Horizonsupporting
confidence: 81%
See 1 more Smart Citation
“…(2008) reported that ANN models had desirable performance for the same time interval [9]. Daneshmand et al (2013) also suggested that ANFIS had desirable performance in the prediction of daily minimum temperatures of Mashhad City located in the east of Iran [12]. Similar to the previous studies, in this study, also the artificial intelligence models provided desirable performance.…”
Section: One Month Forecasting Horizonsupporting
confidence: 81%
“…In another study, Daneshmand et.al. (2013) predicted monthly minimum temperature in Mashhad City, located in northeast of Iran, using ANNs and ANFIS models [12]. Results showed that the ANFIS had suitable performance.…”
Section: Introductionmentioning
confidence: 99%
“…Pada beberapa tahun terakhir, model alternatif telah dikembangkan untuk menganalisis data runtun waktu nonlinear antara lain Neural Networks (NN) oleh Fausset (1994); Haykin (1999)), fuzzy system dan hibridanya (Jang et al, 1997). ANFIS yang menggabungkan antara NN dan fuzzy system telah diimplementasikan dalam berbagai bidang penelitian runtun waktu antara lain aplikasi ANFIS berdasarkan singular spectrum analysis untuk prediksi chaotic time series oleh Abdollahzade et al (2015); prediksi chaotic time series menggunakan ANFIS oleh Behmanesh et al (2014); prediksi runtun waktu fuzzy oleh Cheng et al (2016); pengembangan pendekatan baru untuk prediksi kenaikan harga minyak (Mombeini et al, 2014); computational intelligence untuk prediksi chaotic time series; pemodelan temperatur minimum oleh Daneshmand et al (2015); prediksi return saham oleh Wei et al (2011); prediksi volatilitas finansial oleh Luna and Ballini (2012); prediksi nilai tukar valuta asing oleh Fahimifard et al (2009); dan prediksi fluktuasi tinggi danau menggunakan model ensembles ANN dan ANFIS (Talebizadeh, 2011). Sebagian besar penelitian tersebut menyimpulkan bahwa ANFIS lebih baik dari metode yang lain.…”
Section: Pendahuluanunclassified
“…The combination model is called Adaptive Neuro-Fuzzy Inference System (ANFIS). There are many fields of time series research such as application of ANFIS based on singular spectrum analysis for forecasting chaotic time series [10]; chaotic time series prediction using improved ANFIS [11]; fuzzy time series forecasting [12]; developing a new approach for forecasting the trends of oil price [13]; forecasting of stock return [14]; forecasting of financial volatility [15]. The conclusion of the research related to ANFIS performance for forecasting non-linear data.…”
Section: Introductionmentioning
confidence: 99%