The discovery of ordered mesoporous materials has opened great opportunities for new applications in heterogeneous catalysis e.g. in soil purification processes. The focus of this study is the development of a mathematical model to simulate heat, mass and moisture transfer in soil arrays tacking into account catalytic micro- or nanoparticles. The nonlinear mathematical model of contaminant distribution in unsaturated catalytic porous media to the filter-trap in non-isothermal conditions is presented. The finite differences method was used to find the numerical solution of the corresponding boundary value problem and the analytical solution for mass transfer in catalytic micro- or nanoparticles was presented as well. Numerical experiments and their analysis were conducted using NanoSurface software complex.