Increasing the light extraction efficiency has been widely studied for highly efficient organic light-emitting diodes (OLEDs). Among many light-extraction approaches proposed so far, adding a corrugation layer has been considered a promising solution for its simplicity and high effectiveness. While the working principle of periodically corrugated OLEDs can be qualitatively explained by the diffraction theory, dipolar emission inside the OLED structure makes its quantitative analysis challenging, making one rely on finite-element electromagnetic simulations that could require huge computing resources. Here, we demonstrate a new simulation method, named the diffraction matrix method (DMM), that can accurately predict the optical characteristics of periodically corrugated OLEDs while achieving calculation speed that is a few orders of magnitude faster. Our method decomposes the light emitted by a dipolar emitter into plane waves with different wavevectors and tracks the diffraction behavior of waves using diffraction matrices. Calculated optical parameters show a quantitative agreement with those predicted by finite-difference time-domain (FDTD) method. Furthermore, the developed method possesses a unique advantage over the conventional approaches that it naturally evaluates the wavevector-dependent power dissipation of a dipole and is thus capable of identifying the loss channels inside OLEDs in a quantitative manner.