Pulsating heat pipe (PHP) is one of the prominent research areas in the family of heat pipes. Heat transfer and fluid flow mechanism associated with PHP are quite involved. The analytical models are simple in nature and limited in scope and applicability. The regression models and Artificial Neural Network (ANN) are also limited to a number of input parameters, their ranges and accuracy. The present paper discusses the thermal performance prediction models of a PHP based on ANN and RCA approach. Totally 1652 experimental data are collected from the literature (2003-2017). Nine major influencing input variables are considered for the first time to develop the prediction models. Feed-forward back-propagation neural network is developed and verified. Backward regression analysis is used in RCA-based regression model. Linear and power-law regression correlations are developed for input heat flux in terms of dimensionless Kutateladze (Ku) number, which is a function of Jakob number (Ja), Morton number (Mo), Bond number (Bo), Prandtl number (Pr) and geometry of a PHP. The prediction accuracy of present regression models (R 2 = 0.95) is observed to be better as compared with literature-based correlations.