Experimental mixed-gas sorption/dilation data and mixture densities estimated by the fi tted Sanchez-Lacombe equation of state have been used to estimate the partial molar volumes (PMV) of gases and polymers in multicomponent mixtures (i.e., ternary) at conditions of industrial relevance. The method developed estimates accurately the PMV and volumetric thermal expansion coeffi cients of various highly soluble gases and polymers in multi component mixtures over a wide range of temperatures, pressures, and gas phase compositions. A comparison of solubility, volumetric thermal expansion coeffi cients, and PMVs of the gases involved in the studied ternary mixtures reveal that, irrespective of the polymer nature, co-solvent effect is caused by the gas with higher solubility in the polymer phase and higher thermal expansion coeffi cient, which provides an explanation to the occurrence of co-solubility effects in multicomponent gases/ polymer mixtures. It has also been shown that the PMV behavior of gases in the ternary mixtures with polymers is different from their PMV behavior in the corresponding binary gas/polymer mixtures, and that the PMV of a gaseous penetrant in a multicomponent system depends on its gas phase concentration.