Propagule pressure and disturbance have both been found to facilitate invasion. Therefore, knowledge on the history of introduction and disturbance is vital for understanding an invasion process, and research should focus on areas in which the invasive species has not been deliberately introduced or managed to study unconfounded colonization patterns. Comparing the outcome of such spontaneous colonization processes for different ecosystems might provide a useful framework for setting management priorities for invasive species that enter new, uninvaded areas. We focused on the 70-year spontaneous spread of the invasive tree species Prunus serotina in a pine forest in the Netherlands. To reconstruct the invasion pattern, we combined historical maps, tree ring analysis, spatially explicit tree inventory data, seed density data, and regeneration data for both native and non-native species. Prunus serotina was the only species that showed successful regeneration: the species was present throughout the forest in the tree, shrub, and herb layer. Native species were not able to outgrow the seedling stage. Our data demonstrate that P. serotina is a gap-dependent species with high seed production that builds up a seedling bank. We also compared the results of this study with a similar study on P. serotina colonization in a deciduous forest in Belgium, where P. serotina invasion was not successful. The sharp contrast between the outcomes of the two invasion processes shows the importance of studying an invasive species and the recipient ecosystem jointly and made us raise the hypothesis that herbivore pressure may facilitate P. serotina invasion.