Agent-based modeling is commonly used for studying complex system properties emergent from interactions among agents. However, agent-based models are often not developed explicitly for prediction, and are generally not validated as such. We therefore present a novel data-driven agent-based modeling framework, in which individual behavior model is learned by machine learning techniques, deployed in multi-agent systems and validated using a holdout sequence of collective adoption decisions. We apply the framework to forecasting individual and aggregate residential rooftop solar adoption in San Diego county and demonstrate that the resulting agent-based model successfully forecasts solar adoption trends and provides a meaningful quantification of uncertainty about its predictions. Meanwhile, we construct a second agent-based model, with its parameters calibrated based on mean square error of its fitted aggregate adoption to the ground truth. Our result suggests that our data-driven agent-based approach based on maximum likelihood estimation substantially outperforms the calibrated agent-based model. Seeing advantage over the state-of-the-art modeling methodology, we utilize our agent-based model to aid search for potentially better incentive structures aimed at spurring more solar adoption. Although the impact of solar subsidies is rather limited in our case, our study still reveals that a simple This paper is a significant extension of the following article: Haifeng Zhang, Yevgeniy Vorobeychik, Joshua Letchford, and Kiran Lakkaraju. Data-driven agent-based modeling, with applications to rooftop solar adoption.Auton Agent Multi-Agent Syst heuristic search algorithm can lead to more effective incentive plans than the current solar subsidies in San Diego County and a previously explored structure. Finally, we examine an exclusive class of policies that gives away free systems to low-income households, which are shown significantly more efficacious than any incentive-based policies we have analyzed to date.