2016
DOI: 10.3389/fpsyg.2016.01027
|View full text |Cite
|
Sign up to set email alerts
|

Modeling the Overalternating Bias with an Asymmetric Entropy Measure

Abstract: Psychological research has found that human perception of randomness is biased. In particular, people consistently show the overalternating bias: they rate binary sequences of symbols (such as Heads and Tails in coin flipping) with an excess of alternation as more random than prescribed by the normative criteria of Shannon's entropy. Within data mining for medical applications, Marcellin proposed an asymmetric measure of entropy that can be ideal to account for such bias and to quantify subjective randomness. … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2019
2019
2021
2021

Publication Types

Select...
2

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 15 publications
0
1
0
Order By: Relevance
“…The asymmetric measure of entropy has been suggested as an explanation for human biases and as a way to quantify subjective randomness [112]. A fitted asymmetric entropy measure was predictive when applied to different datasets of randomness-related tasks.…”
Section: Introductionmentioning
confidence: 99%
“…The asymmetric measure of entropy has been suggested as an explanation for human biases and as a way to quantify subjective randomness [112]. A fitted asymmetric entropy measure was predictive when applied to different datasets of randomness-related tasks.…”
Section: Introductionmentioning
confidence: 99%