A dual mode, microstrip, microfluidic sensor was designed, built, and tested, which has the ability to measure a liquid's permittivity at 2.5 GHz and, simultaneously, compensate for temperature variations. The active liquid volume is small, only around 4.5 µL. The sensor comprises two quarter ring microstrip resonators, which are excited in parallel. The first of these is a microfluidic sensor whose resonant frequency and quality factor depend on the dielectric properties of a liquid sample. The second is used as a reference to adjust for changes in the ambient temperature. To validate this method, two liquids (water and chloroform) have been tested over a temperature range from 23°C to 35°C, with excellent compensation results.