Abstract. This paper presents recent, numerical and experimental, developments in modelling dynamic loading generated by humans. As modern structures with exposure to human-induced loading, such as footbridges, building floors and grandstands, are becoming ever lighter and more slender, they are increasingly susceptible to vibration under human-induced dynamic excitation, such as walking, jumping, running and bobbing, and their vibration serviceability assessment is often a deciding factor in the design process. While simplified modelling of the human using a harmonic force was sufficient for assessment of vibration performance of more robust structures a few decades ago, the higher fidelity models are required in the contemporary design. These models are expected not only to describe both temporal and spectral features of the force signal more accurately, but also to capture the influence, psychological and physiological, of human-structure and human-human interaction mechanisms on the human kinematics, and consequently on the force generated and the resulting vibration response. Significant advances have been made in both the research studies and design guidance. This paper reports the key developments and identifies the scope for further research.