Cloud computations are based on the computer networks such as Internet which presents a new pattern to provide, consume and deliver services such as infrastructure, software, ground and other resources using network. The inappropriate timing of assigning loads to the virtual machines in the computational space could lead to unbalance in the system. One of the challenging planning problems. In the cloud data centers is considering both assigning and migration (transfer) of the virtual machines with the ability of reconfiguration and the integrated features of the hosting physical machines. In this article, we introduce an integrated and dynamic timing algorithm based on the Genetic evolution algorithm. The suggested method was evaluated based on these factors and different inputs. Our suggested method is done using Java programming language and cloud-SME simulation. The results show that the execution time and the response time were improved by 12 and 1 percent respectively.