In this work, we present a macroscopic material model for simulation transformation-induced plasticity, which is an important phenomenon in metal forming processes. The model is formulated within a thermodynamic framework at large strains. In order to account for both, phase transformation and plasticity, yield functions are related to these effects. Then, applying the concept of maximum dissipation evolution equations are obtained for the inelastic strains, the transformation strains, a hardening variable and the volume fraction of martensite. Furthermore the numerical implementation of the constitutive equations into a finite element program is described. In a numerical example we investigate the austenite-to-martensite phase transformation in a shaft subjected to thermo-mechanical loading in a hybrid-forming process.