The problem of water treatment at thermal power plants using ion-exchange technologies is a multi-parameter task. Mathematical modeling is essential for research and optimization of ion exchange technology. The analysis of hydrodynamic processes during the operation of ion-exchange filters was carried out according to the developed mathematical model. Also, a physicochemical analysis of the composition of the water treatment plant solutions under real conditions was carried out. It is shown that in the cationite and anionite filters, the flow movement occurs mainly in a mixed hydrodynamic mode. This mode of regeneration and the filter design do not allow achieving the minimum consumption of the reagent for regeneration, the minimum volume of wastewater and the maximum output of demineralized water. The mixed mode of the anion exchange filter operation allows division of the outgoing solution flow into fractions, which can be successfully used in the TPP water cycle.