2014
DOI: 10.5755/j01.eee.20.8.8432
|View full text |Cite
|
Sign up to set email alerts
|

Modelling the Cell Transmembrane Potential Dependence on the Structure of the Pulsed Magnetic Field Coils

Abstract: During high power pulsed magnetic field treatment of biological samples the cells are subjected to both the high magnetic and induced electric fields. The extent of the influence of each treatment component is poorly studied. The work presents the finite element method analysis of pulsed inductive coils that are used for generation of pulsed magnetic and induced electric fields. The simulated coils, electrical parameters and the output characteristics are evaluated in respect to the induced cell transmembrane … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
7
0
3

Year Published

2015
2015
2022
2022

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 18 publications
(11 citation statements)
references
References 27 publications
(20 reference statements)
1
7
0
3
Order By: Relevance
“…The 8 kV/cm electric field strength ( E ) has been achieved using the 800 V electrical pulse in a 1 mm electrode gap cuvette. The spatial distribution of the magnetic field was evaluated using the finite element method (FEM) analysis in Comsol Multiphysics software (COMSOL, Stockholm, Sweden) 63 64 . The coil was driven by single current pulse described as a time function with the peak amplitude of 10.2 kA and duration of 1.2 ms ( Fig.…”
Section: Methodsmentioning
confidence: 99%
“…The 8 kV/cm electric field strength ( E ) has been achieved using the 800 V electrical pulse in a 1 mm electrode gap cuvette. The spatial distribution of the magnetic field was evaluated using the finite element method (FEM) analysis in Comsol Multiphysics software (COMSOL, Stockholm, Sweden) 63 64 . The coil was driven by single current pulse described as a time function with the peak amplitude of 10.2 kA and duration of 1.2 ms ( Fig.…”
Section: Methodsmentioning
confidence: 99%
“…Šiuo metu manoma, kad impulsinis magnetinis laukas indukuoja elektrinį lauką ir tokiu būdu poliarizuoja ląstelės membraną, kas įtakoja porų formavimą panašiai kaip elektroporacijoje (Kranjc et al, 2016;Towhidi et al, 2012). Tačiau, greitai kintančio magnetinio lauko indukuotas elektrinis laukas yra keliomis eilėmis mažesnis nei elektroporacijai reikalingas elektrinis laukas (Lucinskis et al, 2014;V. Novickij, Dermol, et al, 2017;V.…”
Section: Stiprių Impulsinių Elektromagnetinių Laukų Taikymai Biotechnunclassified
“…arcquenching chambers of highvoltage high-current switches) (Budin et al, 2017) 1,5 kV 70 kA 400 µs 600 µs Ignitronas NL-1057 (Giesselmann, et al, 1993) 25 kV 300 kA 4,5 ms 4 ms NL7703EHV (Kumar, et al, 2018) 50 kV 100 kA 5 µs 15 µs Tačiau, magnetinio lauko generavimui taip pat reikalingi impulsiniai induktoriai (ritės), o lauko homogeniškumas ir atitinkamai poveikio parametrai priklauso nuo ritės geometrijos. Įvertinant, kad biologiniams eksperimentams reikalingas iki kelių ml tūris, geriausia naudoti solenoido tipo daugiasluoksnes rites (Lucinskis et al, 2014). Tokių ričių (1.2 pav.)…”
Section: įTaisai Naudojami Stipraus Magnetinio Lauko Generatoriuoseunclassified
See 1 more Smart Citation
“…The high voltage generators are required for the high intensity electric field generation, which induces reversible and non-reversible cell permeability increase effects [4]- [6]. As a rule a controlled discharge of a capacitor array through the biological load using a pulse forming switch is applied [7].…”
Section: Introductionmentioning
confidence: 99%