Abstract:It is important to simulate streamflow with hydrological models suitable for the particular study areas, as the hydrological characteristics of water cycling processes are distinctively different due to spatial heterogeneity at the watershed scale. However, most existing hydrological models cannot be customized to simulate water cycling processes of different areas due to their fixed structures and modes. This study developed a HydroInformatic Modeling System (HIMS) model with a flexible structure which had multiple equations available to describe each of the key hydrological processes. The performance of the HIMS model was evaluated with the recommended structure for semi-arid areas by comparisons with two datasets of observed streamflow: the first one of 53 Australian watersheds, the second one of the Lhasa River basin in China. Based on the first dataset, the most appropriate watersheds were identified for the HIMS model utilization with areas of 400-600 km 2 and annual precipitation of 800-1200 mm. Based on the second dataset, the model performance was statistically satisfied with Nash-Sutcliffe Efficient (NSE) greater than 0.87 and Water Error (WE) within ±20% on the streamflow simulation at hourly, daily, and monthly time steps. In addition, the water balance was mostly closed with respect to precipitation, streamflow, actual evapotranspiration (ET), and soil moisture change at the annual time steps in both the periods of calibration and validation. Therefore, the HIMS model was reliable in estimating streamflow and simulating the water cycling processes for the structure of semi-arid areas. The simulated streamflow of HIMS was compared with those of the Variable Infiltration Capacity model (VIC) and Soil and Water Assessment Tool (SWAT) models and we found that the HIMS model performed better than the SWAT model, and had similar results to the VIC model with combined runoff generation mechanisms.