The proper assessment of evapotranspiration and soil moisture content are fundamental in food security research, land management, pollution detection, nutrient flows, (wild-) fire detection, (desert) locust, carbon balance as well as hydrological modelling; etc. This paper takes an extensive, though not exhaustive sample of international scientific literature to discuss different approaches to estimate land surface and ecosystem related evapotranspiration and soil moisture content. This review presents:
a summary of the generally accepted cohesion theory of plant water uptake and transport including a shortlist of meteorological and plant factors influencing plant transpiration;a summary on evapotranspiration assessment at different scales of observation (sap-flow, porometer, lysimeter, field and catchment water balance, Bowen ratio, scintillometer, eddy correlation, Penman-Monteith and related approaches);a summary on data assimilation schemes conceived to estimate evapotranspiration using optical and thermal remote sensing; andfor soil moisture content, a summary on soil moisture retrieval techniques at different spatial and temporal scales is presented.Concluding remarks on the best available approaches to assess evapotranspiration and soil moisture content with and emphasis on remote sensing data assimilation, are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.