[1] We explore and review the value of soil moisture measurements in vadose zone hydrology with a focus on the field and catchment scales. This review is motivated by the increasing ability to measure soil moisture with unprecedented spatial and temporal resolution across scales. We highlight and review the state of the art in using soil moisture measurements for (1) estimation of soil hydraulic properties, (2) quantification of water and energy fluxes, and (3) retrieval of spatial and temporal dynamics of soil moisture profiles. We argue for the urgent need to have access to field monitoring sites and databases that include detailed information about variability of hydrological fluxes and parameters, including their upscaled values. In addition, improved data assimilation methods are needed that fully exploit the information contained in soil moisture data. The development of novel upscaling methods for predicting effective moisture fluxes and disaggregation schemes toward integrating large-scale soil moisture measurements in hydrological models will increase the value of soil moisture measurements. Finally, we recognize a need to develop strategies that combine hydrogeophysical measurement techniques with remote sensing methods.
The remarkable complexity of soil and its importance to a wide range of ecosystem services presents major challenges to the modeling of soil processes. Although major progress in soil models has occurred in the last decades, models of soil processes remain disjointed between disciplines or ecosystem services, with considerable uncertainty remaining in the quality of predictions and several challenges that remain yet to be addressed. First, there is a need to improve exchange of knowledge and experience among the different disciplines in soil science and to reach out to other Earth science communities. Second, the community needs to develop a new generation of soil models based on a systemic approach comprising relevant physical, chemical, and biological processes to address critical knowledge gaps in our understanding of soil processes and their interactions. Overcoming these challenges will facilitate exchanges between soil modeling and climate, plant, and social science modeling communities. It will allow us to contribute to preserve and improve our assessment of ecosystem services and advance our understanding of climate-change feedback mechanisms, among others, thereby facilitating and strengthening communication among scientific disciplines and society. We review the role of modeling soil processes in quantifying key soil processes that shape ecosystem services, with a focus on provisioning and regulating services. We then identify key challenges in modeling soil processes, including the systematic incorporation of heterogeneity and uncertainty, the integration of data and models, and strategies for effective integration of knowledge on physical, chemical, and biological soil processes. We discuss how the soil modeling community could best interface with modern modeling activities in other disciplines, such as climate, ecology, and plant research, and how to weave novel observation and measurement techniques into soil models. We propose the establishment of an international soil modeling consortium to coherently advance soil modeling activities and foster communication with other Earth science disciplines. Such a consortium should promote soil modeling platforms and data repository for model development, calibration and intercomparison essential for addressing contemporary challenges.
We reviewed the use of the van Genuchten–Mualem (VGM) model to parameterize soil hydraulic properties and for developing pedotransfer functions (PTFs). Analysis of literature data showed that the moisture retention characteristic (MRC) parameterization by setting shape parameters m = 1 − 1/n produced the largest deviations between fitted and measured water contents for pressure head values between 330 (log10 pressure head [pF] 2.5) and 2500 cm (pF 3.4). The Schaap–van Genuchten model performed best in describing the unsaturated hydraulic conductivity, K The classical VGM model using fixed parameters produced increasingly higher root mean squared residual, RMSR, values when the soil became drier. The most accurate PTFs for estimating the MRC were obtained when using textural properties, bulk density, soil organic matter, and soil moisture content. The RMSR values for these PTFs approached those of the direct fit, thus suggesting a need to improve both PTFs and the MRC parameterization. Inclusion of the soil water content in the PTFs for K only marginally improved their prediction compared with the PTFs that used only textural properties and bulk density. Including soil organic matter to predict K had more effect on the prediction than including soil moisture. To advance the development of PTFs, we advocate the establishment of databases of soil hydraulic properties that (i) are derived from standardized and harmonized measurement procedures, (ii) contain new predictors such as soil structural properties, and (iii) allow the development of time‐dependent PTFs. Successful use of structural properties in PTFs will require parameterizations that account for the effect of structural properties on the soil hydraulic functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.