[1] We explore and review the value of soil moisture measurements in vadose zone hydrology with a focus on the field and catchment scales. This review is motivated by the increasing ability to measure soil moisture with unprecedented spatial and temporal resolution across scales. We highlight and review the state of the art in using soil moisture measurements for (1) estimation of soil hydraulic properties, (2) quantification of water and energy fluxes, and (3) retrieval of spatial and temporal dynamics of soil moisture profiles. We argue for the urgent need to have access to field monitoring sites and databases that include detailed information about variability of hydrological fluxes and parameters, including their upscaled values. In addition, improved data assimilation methods are needed that fully exploit the information contained in soil moisture data. The development of novel upscaling methods for predicting effective moisture fluxes and disaggregation schemes toward integrating large-scale soil moisture measurements in hydrological models will increase the value of soil moisture measurements. Finally, we recognize a need to develop strategies that combine hydrogeophysical measurement techniques with remote sensing methods.
The remarkable complexity of soil and its importance to a wide range of ecosystem services presents major challenges to the modeling of soil processes. Although major progress in soil models has occurred in the last decades, models of soil processes remain disjointed between disciplines or ecosystem services, with considerable uncertainty remaining in the quality of predictions and several challenges that remain yet to be addressed. First, there is a need to improve exchange of knowledge and experience among the different disciplines in soil science and to reach out to other Earth science communities. Second, the community needs to develop a new generation of soil models based on a systemic approach comprising relevant physical, chemical, and biological processes to address critical knowledge gaps in our understanding of soil processes and their interactions. Overcoming these challenges will facilitate exchanges between soil modeling and climate, plant, and social science modeling communities. It will allow us to contribute to preserve and improve our assessment of ecosystem services and advance our understanding of climate-change feedback mechanisms, among others, thereby facilitating and strengthening communication among scientific disciplines and society. We review the role of modeling soil processes in quantifying key soil processes that shape ecosystem services, with a focus on provisioning and regulating services. We then identify key challenges in modeling soil processes, including the systematic incorporation of heterogeneity and uncertainty, the integration of data and models, and strategies for effective integration of knowledge on physical, chemical, and biological soil processes. We discuss how the soil modeling community could best interface with modern modeling activities in other disciplines, such as climate, ecology, and plant research, and how to weave novel observation and measurement techniques into soil models. We propose the establishment of an international soil modeling consortium to coherently advance soil modeling activities and foster communication with other Earth science disciplines. Such a consortium should promote soil modeling platforms and data repository for model development, calibration and intercomparison essential for addressing contemporary challenges.
We studied water uptake variability at the plant scale using a three‐dimensional detailed model. Specifically, we investigated the sensitivity of the R‐SWMS model under different plant collar conditions by comparing computed water fluxes, flow variability, and soil water distributions for different case scenarios and different parameterizations. The relative radial root conductivity and soil hydraulic conductivity were shown to control the plant water extraction distribution. Highly conductive soils promote water uptake but at the same time decrease the variability of the soil water content. A large radial root conductivity increases the amount of water extracted by the root and generates very heterogeneous water extraction profiles. Increasing the xylem conductivity has less impact because the xylem is generally the most conductive part of the system. It was also determined that, due to the different magnitudes of soil and root conductivities, similar one‐dimensional sink‐term profiles can result in very different water content and flux distributions at the plant scale. Furthermore, an analysis based on soil texture showed that the ability of a soil to sustain high plant transpiration demand cannot be predicted a priori from the soil hydraulic properties only, as it depends on the evaporative demand and on the three‐dimensional distributions of the soil/root conductivity ratio and soil capacity, which continuously evolve with time. Combining soil and root hydraulic properties led to very complex one‐dimensional sink functions that are quite different from the simple reduction functions usually found in the literature. The R‐SWMS model could be used to develop more realistic one‐dimensional reduction functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.