Testing of vehicle design properties by car manufacturers is primarily performed on-road and is resource-intensive, involving costly physical prototypes and large time durations between evaluations of alternative designs. In this paper, the applicability of driving simulators for the virtual assessment of ride, steering and handling qualities was studied by manipulating vehicle air suspension ride height (RH) (ground clearance) and simulator motion platform (MP) workspace size. The evaluation was carried out on a high-friction normal road, routinely used for testing vehicle prototypes, modelled in a driving simulator, and using professional drivers. The results showed the differences between the RHs were subjectively distinguishable by the drivers in many of the vehicle attributes. Drivers found standard and low RHs more appropriate for the vehicle in terms of the steering and handling qualities, where their performance was deteriorated, such that the steering control effort was the highest in low RH. This indicated inconsistency between subjective preferences and objective performance and the need for alternative performance metrics to be defined for expert drivers. Moreover, an improvement in drivers’ performance was observed, with a reduction of steering control effort, in larger MP configurations.