The importance of sensory feedback for postural control in stance is evident from the balance improvements occurring when sensory information from the vestibular, somatosensory, and visual systems is available. However, the extent to which also audio-biofeedback (ABF) information can improve balance has not been determined. It is also unknown why additional artificial sensory feedback is more effective for some subjects than others and in some environmental contexts than others. The aim of this study was to determine the relative effectiveness of an ABF system to reduce postural sway in stance in healthy control subjects and in subjects with bilateral vestibular loss, under conditions of reduced vestibular, visual, and somatosensory inputs. This ABF system used a threshold region and non-linear scaling parameters customized for each individual, to provide subjects with pitch and volume coding of their body sway. ABF had the largest effect on reducing the body sway of the subjects with bilateral vestibular loss when the environment provided limited visual and somatosensory information; it had the smallest effect on reducing the sway of subjects with bilateral vestibular loss, when the environment provided full somatosensory information. The extent that all subjects substituted ABF information for their loss of sensory information was related to the extent that each subject was visually dependent or somatosensory-dependent for their postural control. Comparison of postural sway under a variety of sensory conditions suggests that patients with profound bilateral loss of vestibular function show larger than normal information redundancy among the remaining senses and ABF of trunk sway. The results support the hypothesis that the nervous system uses augmented sensory information differently depending both on the environment and on individual proclivities to rely on vestibular, somatosensory or visual information to control sway.
The information contained in this document was taken directly from the submission of the authors. This document has not been edited by the Transportation Research Board. Authors herein are responsible for the authenticity of their materials and for obtaining written permissions from publishers or persons who own the copyright to any previously published or copyrighted material used herein.
This paper introduces a prototype audio-biofeedback system for balance improvement through the sonification using trunk kinematic information. In tests of this system, normal healthy subjects performed several trials in which they stood quietly in three sensory conditions while wearing an accelerometric sensory unit and headphones. The audio-biofeedback system converted in real-time the two-dimensional horizontal trunk accelerations into a stereo sound by modulating its frequency, level, and left/right balance. Preliminary results showed that subjects improved balance using this audio-biofeedback system and that this improvement was greater the more that balance was challenged by absent or unreliable sensory cues. In addition, high correlations were found between the center of pressure displacement and trunk acceleration, suggesting accelerometers may be useful for quantifying standing balance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.