BackgroundClinicians need a practical, objective test of postural control that is sensitive to mild neurological disease, shows experimental and clinical validity, and has good test-retest reliability. We developed an instrumented test of postural sway (ISway) using a body-worn accelerometer to offer an objective and practical measure of postural control.MethodsWe conducted two separate studies with two groups of subjects. Study I: sensitivity and experimental concurrent validity. Thirteen subjects with early, untreated Parkinson’s disease (PD) and 12 age-matched control subjects (CTR) were tested in the laboratory, to compare sway from force-plate COP and inertial sensors. Study II: test-retest reliability and clinical concurrent validity. A different set of 17 early-to-moderate, treated PD (tested ON medication), and 17 age-matched CTR subjects were tested in the clinic to compare clinical balance tests with sway from inertial sensors. For reliability, the sensor was removed, subjects rested for 30 min, and the protocol was repeated. Thirteen sway measures (7 time-domain, 5 frequency-domain measures, and JERK) were computed from the 2D time series acceleration (ACC) data to determine the best metrics for a clinical balance test.ResultsBoth center of pressure (COP) and ACC measures differentiated sway between CTR and untreated PD. JERK and time-domain measures showed the best test-retest reliability (JERK ICC was 0.86 in PD and 0.87 in CTR; time-domain measures ICC ranged from 0.55 to 0.84 in PD and from 0.60 to 0.89 in CTR). JERK, all but one time-domain measure, and one frequency measure were significantly correlated with the clinical postural stability score (r ranged from 0.50 to 0.63, 0.01 < p < 0.05).ConclusionsBased on these results, we recommend a subset of the most sensitive, reliable, and valid ISway measures to characterize posture control in PD: 1) JERK, 2) RMS amplitude and mean velocity from the time-domain measures, and 3) centroidal frequency as the best frequency measure, as valid and reliable measures of balance control from ISway.
Despite extensive preventive efforts, falls continue to be a major source of morbidity and mortality among elderly. Real-time detection of falls and their urgent communication to a telecare center may enable rapid medical assistance, thus increasing the sense of security of the elderly and reducing some of the negative consequences of falls. Many different approaches have been explored to automatically detect a fall using inertial sensors. Although previously published algorithms report high sensitivity (SE) and high specificity (SP), they have usually been tested on simulated falls performed by healthy volunteers. We recently collected acceleration data during a number of real-world falls among a patient population with a high-fall-risk as part of the SensAction-AAL European project. The aim of the present study is to benchmark the performance of thirteen published fall-detection algorithms when they are applied to the database of 29 real-world falls. To the best of our knowledge, this is the first systematic comparison of fall detection algorithms tested on real-world falls. We found that the SP average of the thirteen algorithms, was (mean±std) 83.0%±30.3% (maximum value = 98%). The SE was considerably lower (SE = 57.0%±27.3%, maximum value = 82.8%), much lower than the values obtained on simulated falls. The number of false alarms generated by the algorithms during 1-day monitoring of three representative fallers ranged from 3 to 85. The factors that affect the performance of the published algorithms, when they are applied to the real-world falls, are also discussed. These findings indicate the importance of testing fall-detection algorithms in real-life conditions in order to produce more effective automated alarm systems with higher acceptance. Further, the present results support the idea that a large, shared real-world fall database could, potentially, provide an enhanced understanding of the fall process and the information needed to design and evaluate a high-performance fall detector.
CuPiD was feasible, well-accepted and seemed to be an effective approach to promote gait training, as participants improved equally to controls. This benefit may be ascribed to the real-time feedback, stimulating corrective actions and promoting self-efficacy to achieve optimal performance. Further optimization of the system and adequately-powered studies are warranted to corroborate these findings and determine cost-effectiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.