CuPiD was feasible, well-accepted and seemed to be an effective approach to promote gait training, as participants improved equally to controls. This benefit may be ascribed to the real-time feedback, stimulating corrective actions and promoting self-efficacy to achieve optimal performance. Further optimization of the system and adequately-powered studies are warranted to corroborate these findings and determine cost-effectiveness.
Objective: To quantify postural sway in subjects with Parkinson's disease and elderly controls, and determine the effects of Parkinson's disease, deep brain stimulation, levodopa, and their interactions on postural control during quiet stance. Methods: Centre of foot pressure (CoP) displacement under each foot was measured during three 60 s trials of quiet stance with eyes open in 11 controls and six patients with Parkinson's disease. Subjects with Parkinson's disease were tested in four treatment conditions: off both deep brain stimulation and levodopa (off condition); on deep brain stimulation; on levodopa; and on both deep brain stimulation and levodopa. The variables extracted from CoP included: root mean square distance (rms), mean velocity, 95% power frequency (f 95% ), area of the 95% confidence ellipse (ellipse area), direction of its major axis (mdir), and postural asymmetry between the feet. Results: rms and area of postural sway were larger than normal in subjects with Parkinson's disease in the off condition, increased further with levodopa, and significantly decreased with deep brain stimulation. Mean velocity and f 95% were also larger than normal but were restored to normal by all treatments, especially by deep brain stimulation. The combined effect of deep brain stimulation and levodopa resulted in a postural sway that was an average of the effect of each treatment individually. Levodopa increased sway more in the mediolateral than in the anterior-posterior direction. Subjects with Parkinson's disease had asymmetrical mean velocity and f 95% between the feet, and this asymme-
Inertial and magnetic measurement systems (IMMSs) are a new generation of motion analysis systems which may diffuse the measurement of upper-limb kinematics to ambulatory settings. Based on the MT9B IMMS (Xsens Technologies, NL), we therefore developed a protocol that measures the scapulothoracic, humerothoracic and elbow 3D kinematics. To preliminarily evaluate the protocol, a 23-year-old subject performed six tasks involving shoulder and elbow single-joint-angle movements. Criteria for protocol validity were limited cross-talk with the other joint-angles during each task; scapulohumeral-rhythm close to literature results; and constant carrying-angle. To assess the accuracy of the MT9B when measuring the upper-limb kinematics through the protocol, we compared the MT9B estimations during the six tasks, plus other four, with the estimations of an optoelectronic system (the gold standard), in terms of RMS error, correlation coefficient (r), and the amplitude ratio (m). Results indicate that the criteria for protocol validity were met for all tasks. For the joint angles mainly involved in each movement, the MT9B estimations presented RMS errors <3.6 degrees , r > 0.99 and 0.9 < m < 1.09. It appears therefore that (1) the protocol in combination with the MT9B is valid for, and (2) the MT9B in combination with the protocol is accurate when, measuring shoulder and elbow kinematics, during the tasks tested, in ambulatory settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.