The loss of one hand can significantly affect the level of autonomy and the capability of performing daily living, working and social activities. The current prosthetic solutions contribute in a poor way to overcome these problems due to limitations in the interfaces adopted for controlling the prosthesis and to the lack of force or tactile feedback, thus limiting hand grasp capabilities. This paper presents a literature review on needs analysis of upper limb prosthesis users, and points out the main critical aspects of the current prosthetic solutions, in terms of users satisfaction and activities of daily living they would like to perform with the prosthetic device. The ultimate goal is to provide design inputs in the prosthetic field and, contemporary, increase user satisfaction rates and reduce device abandonment. A list of requirements for upper limb prostheses is proposed, grounded on the performed analysis on user needs. It wants to (i) provide guidelines for improving the level of acceptability and usefulness of the prosthesis, by accounting for hand functional and technical aspects; (ii) propose a control architecture of PNS-based prosthetic systems able to satisfy the analyzed user wishes; (iii) provide hints for improving the quality of the methods (e.g., questionnaires) adopted for understanding the user satisfaction with their prostheses.
Inertial and magnetic measurement systems (IMMSs) are a new generation of motion analysis systems which may diffuse the measurement of upper-limb kinematics to ambulatory settings. Based on the MT9B IMMS (Xsens Technologies, NL), we therefore developed a protocol that measures the scapulothoracic, humerothoracic and elbow 3D kinematics. To preliminarily evaluate the protocol, a 23-year-old subject performed six tasks involving shoulder and elbow single-joint-angle movements. Criteria for protocol validity were limited cross-talk with the other joint-angles during each task; scapulohumeral-rhythm close to literature results; and constant carrying-angle. To assess the accuracy of the MT9B when measuring the upper-limb kinematics through the protocol, we compared the MT9B estimations during the six tasks, plus other four, with the estimations of an optoelectronic system (the gold standard), in terms of RMS error, correlation coefficient (r), and the amplitude ratio (m). Results indicate that the criteria for protocol validity were met for all tasks. For the joint angles mainly involved in each movement, the MT9B estimations presented RMS errors <3.6 degrees , r > 0.99 and 0.9 < m < 1.09. It appears therefore that (1) the protocol in combination with the MT9B is valid for, and (2) the MT9B in combination with the protocol is accurate when, measuring shoulder and elbow kinematics, during the tasks tested, in ambulatory settings.
A protocol named "Outwalk" was recently proposed to measure the thorax-pelvis and lower-limb kinematics during gait in free-living conditions, by means of an inertial and magnetic measurement system (IMMS). The aim of this study was to validate Outwalk on four healthy subjects when it is used in combination with a specific IMMS (Xsens Technologies, NL), against a reference protocol (CAST) and measurement system (optoelectronic system; Vicon, Oxford Metrics Group, UK). For this purpose, we developed an original approach based on three tests, which allowed to separately investigate: (1) the consequences on joint kinematics of the differences between protocols (Outwalk vs. CAST), (2) the accuracy of the hardware (Xsens vs. Vicon), and (3) the summation of protocols' differences and hardware accuracy (Outwalk + Xsens vs. CAST + Vicon). In order to assess joint-angles similarity, the coefficient of multiple correlation (CMC) was used. For test 3, the CMC showed that Outwalk + Xsens and CAST + Vicon kinematics can be interchanged, offset included, for hip, knee and ankle flexion-extension, and hip ab-adduction (CMC > 0.88). The other joint-angles can be interchanged offset excluded (CMC > 0.85). Tests 1 and 2 also showed that differences in offset between joint-angles were predominantly induced by differences in the protocols; differences in correlation by both hardware and protocols; differences in range of motion by the Xsens accuracy. Results thus support the commencement of a clinical trial of Outwalk on transtibial amputees.
A protocol named Outwalk was developed to easily measure the thorax-pelvis and lower-limb 3D kinematics on children with cerebral palsy (CP) and amputees during gait in free-living conditions, by means of an Inertial and Magnetic Measurement System (IMMS). Outwalk defines the anatomical/functional coordinate systems (CS) for each body segment through three steps: (1) positioning the sensing units (SUs) of the IMMS on the subjects' thorax, pelvis, thighs, shanks and feet, following simple rules; (2) computing the orientation of the mean flexion-extension axis of the knees; (3) measuring the SUs' orientation while the subject's body is oriented in a predefined posture, either upright or supine. If the supine posture is chosen, e.g. when spasticity does not allow to maintain the upright posture, hips and knees static flexion angles must be measured through a standard goniometer and input into the equations that define Outwalk anatomical CSs. In order to test for the inter-rater measurement reliability of these angles, a study was carried out involving nine healthy children (7.9 +/- 2 years old) and two physical therapists as raters. Results showed RMS error of 1.4 degrees and 1.8 degrees and a negligible worst-case standard error of measurement of 2.0 degrees and 2.5 degrees for hip and knee angles, respectively. Results were thus smaller than those reported for the same measures when performed through an optoelectronic system with the CAST protocol and support the beginning of clinical trials of Outwalk with children with CP.
BackgroundThe aim of this study was to evaluate a method based on a single accelerometer for the assessment of gait symmetry and regularity in subjects wearing lower limb prostheses.MethodsTen transfemoral amputees and ten healthy control subjects were studied. For the purpose of this study, subjects wore a triaxial accelerometer on their thorax, and foot insoles. Subjects were asked to walk straight ahead for 70 m at their natural speed, and at a lower and faster speed. Indices of step and stride regularity (Ad1 and Ad2, respectively) were obtained by the autocorrelation coefficients computed from the three acceleration components. Step and stride durations were calculated from the plantar pressure data and were used to compute two reference indices (SI1 and SI2) for step and stride regularity.ResultsRegression analysis showed that both Ad1 well correlates with SI1 (R2 up to 0.74), and Ad2 well correlates with SI2 (R2 up to 0.52). A ROC analysis showed that Ad1 and Ad2 has generally a good sensitivity and specificity in classifying amputee's walking trial, as having a normal or a pathologic step or stride regularity as defined by means of the reference indices SI1 and SI2. In particular, the antero-posterior component of Ad1 and the vertical component of Ad2 had a sensitivity of 90.6% and 87.2%, and a specificity of 92.3% and 81.8%, respectively.ConclusionsThe use of a simple accelerometer, whose components can be analyzed by the autocorrelation function method, is adequate for the assessment of gait symmetry and regularity in transfemoral amputees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.