The triple jump is an athletic event comprising three phases in which the optimal proportion of each phase to the total distance jumped, termed the phase ratio, is unknown. This study used a whole-body torque-driven computer simulation model of all three phases of the triple jump to investigate optimal technique. The technique of the simulation model was optimised by varying torque generator activation parameters using a Genetic Algorithm in order to maximise total jump distance, resulting in a hop-dominated technique (35.7%:30.8%:33.6%) and a distance of 14.05m. Optimisations were then run with penalties forcing the model to adopt hop and jump phases of 33%, 34%, 35%, 36%, and 37% of the optimised distance, resulting in total distances of: 13.79m, 13.87m, 13.95m, 14.05m, and 14.02m; and 14.01m, 14.02m, 13.97m, 13.84m, and 13.67m respectively. These results indicate that in this subject-specific case there is a plateau in optimum technique encompassing balanced and hop-dominated techniques, but that a jump-dominated technique is associated with a decrease in performance. Hop-dominated techniques are associated with higher forces than jump-dominated techniques; therefore optimal phase ratio may be related to a combination of strength and approach velocity.