The Cauchy-Dirichlet problem for the Moore-Gibson-Thompson equation is analyzed. With the focus on non-homogeneous boundary data, two approaches are offered: one is based on the theory of hyperbolic equations, while the other one uses the theory of operator semigroups. This is a mixed hyperbolic problem with a characteristic spatial boundary. Hence, the regularity results exhibit some deficiencies when compared with the non-characteristic case.Résumé. On analyse le problème de Cauchy-Dirichlet pour l'équation de Moore-Gibson-Thompson avec des données non-homogènes. Deux méthodes sont considérées: la théorie des équations hyperboliques et la théorie des semi-groupes d'opérateurs. Il s'agit d'un problème hyperbolique mixte avec une frontière spatiale caractéristique. Par conséquent, les résultats de régularité présentent certaines lacunes par rapport au cas non caractéristique.