We consider the Cauchy problem for a model of non-linear acoustic, named the Kuznetsov equation, describing a sound propagation in thermo-viscous elastic media. For the viscous case, it is a weakly quasi-linear strongly damped wave equation, for which we prove the global existence in time of regular solutions for sufficiently small initial data, the size of which is specified, and give the corresponding energy estimates. In the inviscid case, we update the known results of John for quasi-linear wave equations, obtaining the well-posedness results for less regular initial data. We obtain, using a priori estimates and a Klainerman inequality, the estimations of the maximal existence time, depending on the space dimension, which are optimal, thanks to the blow-up results of Alinhac. Alinhac's blow-up results are also confirmed by a L 2 -stability estimate, obtained between a regular and a less regular solutions.
The weak well-posedness, with the mixed boundary conditions, of the strongly damped linear wave equation and of the non linear Westervelt equation is proved in the largest natural class of Sobolev admissible non-smooth domains. In the framework of uniform domains in R 2 or R 3 we also validate the approximation of the solution of the Westervelt equation on a fractal domain by the solutions on the prefractals using the Mosco convergence of the corresponding variational forms.
We relate together different models of non linear acoustic in thermoelastic media as the Kuznetsov equation, the Westervelt equation, the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and the Nonlinear Progressive wave Equation (NPE) and estimate the time during which the solutions of these models keep closed in the L 2 norm. The KZK and NPE equations are considered as paraxial approximations of the Kuznetsov equation. The Westervelt equation is obtained as a nonlinear approximation of the Kuznetsov equation. Aiming to compare the solutions of the exact and approximated systems in found approximation domains the well-posedness results (for the Kuznetsov equation in a half-space with periodic in time initial and boundary data) are obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.