3-D seismic interpretation and petrophysical analysis of the Osaja Field, Niger Delta, was carried out with aim of carrying out a detailed structural interpretation, reservoir characterization and volumetric estimation of the field. Four wells were correlated across the field to delineate the lithology and establish the continuity of reservoir sand as well as the general stratigraphy of the area. The petrophysical analysis carried out, revealed two sand units that are hydrocarbon bearing reservoirs (Sand_A and Sand_B).The spatial variation of the reservoirs were studied on a field wide scale using seismic interpretation. Time and depth structural maps generated were used to establish the structural architecture/geometry of the prospect area of the field. The depth structure map revealed NE-SW trending anticlinal structures with F5and F6as faults assisted closures to the reservoir. Furthermore, reservoir parameters such as net pay, water saturation porosity, net-to-gross etc, were derived from the integration of seismic and well log data. The structural interpretation on the 3-D seismic data of the study area revealed a total of seven faults ranging from synthetic to antithetic faults. The petrophysical analysis gave the porosity values of the reservoir Sand_A ranging from 18.1 - 20.3% and reservoir Sand_B ranging from 13.1-14.9% across the reservoir. The permeability values of reservoir Sand_A ranging from 63-540md and reservoir Sand_B ranging from 18-80md hence there is decrease in porosity and permeability of the field with depth.The net-to-gross varies from 22.1% to 22.4% in Rerservoir Sand A to between 5.34- 12% for Rerservoir Sand _A while Sw values for the reservoirs ranges from 38-42% in well 2 to about 68.79-96.06% in well 11. The result of original oil in place for all the wells calculated revealed that well 2 has the highest value with 9.3mmbls. These results indicate that the reservoirs under consideration have a poor to fair hydrocarbon (oil) prospect.