2020
DOI: 10.1016/j.jasrep.2020.102423
|View full text |Cite
|
Sign up to set email alerts
|

Modern methods for old data: An overview of some robust methods for outliers detection with applications in osteology

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
5
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 7 publications
(6 citation statements)
references
References 51 publications
0
5
0
1
Order By: Relevance
“…Voor dit project worden outliers gedefinieerd als iedereen wiens waarden groter of kleiner zijn dan het gemiddelde met twee maal de standaard deviatie, zoals ook de norm is in de archeologische wetenschappen (Santos 2020). Dit wordt consistent zo toegepast voor alles sites afzonderlijk en voor de complete site-overspannende dataset.…”
Section: Outliers En Afwijkende Resultaten Bij Individuen Met Pathologieunclassified
“…Voor dit project worden outliers gedefinieerd als iedereen wiens waarden groter of kleiner zijn dan het gemiddelde met twee maal de standaard deviatie, zoals ook de norm is in de archeologische wetenschappen (Santos 2020). Dit wordt consistent zo toegepast voor alles sites afzonderlijk en voor de complete site-overspannende dataset.…”
Section: Outliers En Afwijkende Resultaten Bij Individuen Met Pathologieunclassified
“…In addition, multivariate outliers must be checked before conducting EFA [56]. A robust Mahalanobis distance (significant at α = 0.01) was used [57]. Watkins [58] argued that in the presence of multivariate outliers, the use of polychoric correlations might be more appropriate.…”
Section: Exploratory Factor Analysismentioning
confidence: 99%
“…Some clustering methods are sensitive to outliers [68]. To determine the appropriate clustering method, the data were checked for multivariate outliers using a robust Mahalanobis distance with a significance level of p < 0.01 [57].…”
Section: Cluster Analysismentioning
confidence: 99%
“…The extreme value identifications were carried out via standardization at the value of two and three standard deviations from the mean. Various predictive methods have been used for detection of outliers in the dataset [23][24][25][26][27]. The authors remarked that neural networks and linear models are sensitive to noise points, whereas decision trees are robust to outliers.…”
Section: Related Work and Problem Statementmentioning
confidence: 99%