Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
According to the EP monograph "Sodium hyaluronate" for identification they use the infrared transmission spectrum of the substance, quantification is carried out by spectrophotometry. The aim of the work was to develop a method for quantitative determination of hyaluronic acid in the gel in the presence of other substances and its validation. Materials and Methods. The object of the study were samples of combined dental gel of the following composition: metronidazole benzoate 16 mg/g, miramistin 5 mg / g, sodium hyaluronate 2 mg / g. Identification and quantification of sodium hyaluronate was performed by liquid chromatography (SPhU, 2.2.29, 2.2.46). The test solution and the reference solution were chromatographed, obtaining the number of parallel chromatograms not less than when checking the suitability of the chromatographic system. Chromatography is performed on a liquid chromatograph with a diode-matrix detector under the following conditions: chromatographic column PL-aquagel-OH, Agilent size 300 mm × 7.5 mm, with a particle size of sorbent 8 μm; mobile phase A: 0.1 M sodium sulfate solution; mobile phase B: acetonitrile for chromatography P; detection at a wavelength of 210 nm. Results. The retention time of sodium hyaluronate on the chromatogram of the test sample of the gel coincides with the peak and the retention time on the chromatogram of the comparison solution of the standard sample of the substance. The suitability of the chromatographic system for 3 parallel determinations was checked: the relative standard deviation (RSD) is equal to 0.25, the number of theoretical plates is 980, the symmetry coefficient is 1.293. The validation characteristics of the developed methodology meet the established eligibility criteria. The spectral purity coefficients (Fp) of the sodium hyaluronate peak on the chromatograms of the model solution are Fp1=997.665 and Fp2=997,802. The method is linear in the range of sodium concentration of hyaluronate 80–120 %, the calculated linear dependence of the reduced area of the chromatographic peak on the reduced concentration of sodium hyaluronate is |a|=1.9490≤Δa=2.56. The confidence interval of the unit value for the sample of relations is found / entered Δz=1.08, which corresponds to the condition Δz≤1.6 %. The value of the systematic error is equal to δ=0.12, which satisfies the condition δ≤0.51 %. Conclusions. The method of quantitative determination of sodium hyaluronate by the method of high-performance liquid chromatography has been developed and investigated. The method allows the identification and quantification of sodium hyaluronate in the composition of the dental gel, in the presence of metronidazole benzoate and miramistin. Validation of the methodology was performed and the main validation characteristics were determined. In terms of specificity, linearity, correctness, convergence of the method meets the eligibility criteria established by the SPhU.
According to the EP monograph "Sodium hyaluronate" for identification they use the infrared transmission spectrum of the substance, quantification is carried out by spectrophotometry. The aim of the work was to develop a method for quantitative determination of hyaluronic acid in the gel in the presence of other substances and its validation. Materials and Methods. The object of the study were samples of combined dental gel of the following composition: metronidazole benzoate 16 mg/g, miramistin 5 mg / g, sodium hyaluronate 2 mg / g. Identification and quantification of sodium hyaluronate was performed by liquid chromatography (SPhU, 2.2.29, 2.2.46). The test solution and the reference solution were chromatographed, obtaining the number of parallel chromatograms not less than when checking the suitability of the chromatographic system. Chromatography is performed on a liquid chromatograph with a diode-matrix detector under the following conditions: chromatographic column PL-aquagel-OH, Agilent size 300 mm × 7.5 mm, with a particle size of sorbent 8 μm; mobile phase A: 0.1 M sodium sulfate solution; mobile phase B: acetonitrile for chromatography P; detection at a wavelength of 210 nm. Results. The retention time of sodium hyaluronate on the chromatogram of the test sample of the gel coincides with the peak and the retention time on the chromatogram of the comparison solution of the standard sample of the substance. The suitability of the chromatographic system for 3 parallel determinations was checked: the relative standard deviation (RSD) is equal to 0.25, the number of theoretical plates is 980, the symmetry coefficient is 1.293. The validation characteristics of the developed methodology meet the established eligibility criteria. The spectral purity coefficients (Fp) of the sodium hyaluronate peak on the chromatograms of the model solution are Fp1=997.665 and Fp2=997,802. The method is linear in the range of sodium concentration of hyaluronate 80–120 %, the calculated linear dependence of the reduced area of the chromatographic peak on the reduced concentration of sodium hyaluronate is |a|=1.9490≤Δa=2.56. The confidence interval of the unit value for the sample of relations is found / entered Δz=1.08, which corresponds to the condition Δz≤1.6 %. The value of the systematic error is equal to δ=0.12, which satisfies the condition δ≤0.51 %. Conclusions. The method of quantitative determination of sodium hyaluronate by the method of high-performance liquid chromatography has been developed and investigated. The method allows the identification and quantification of sodium hyaluronate in the composition of the dental gel, in the presence of metronidazole benzoate and miramistin. Validation of the methodology was performed and the main validation characteristics were determined. In terms of specificity, linearity, correctness, convergence of the method meets the eligibility criteria established by the SPhU.
In recent years, there has been growing interest in the use of tear substitutes, based on natural polysaccharides in the treatment of dry eye syndrome, the leader of which is hyaluronic acid (HA). It has sufficient biocompatibility, non-immunogenicity, high viscoelasticity, hydrophilic, mucus-adhesive and good moisturizing properties. At the same time, in order to improve artificial tear preparations, there is a need to improve the mechanical and rheological properties of HA, its hygroscopicity, swelling in an aqueous environment and reducing the rate of biodegradation. One of the ways to solve this problem was the chemical modification of HA, by cross-linking its chains with two or more covalent bonds, with the participation of various polyfunctional molecules: urea, HA-cysteine ethyl ester, polyfunctional diepoxides, glutaraldehyde, carbodiimide, and many others. At the same time, the rigidity of the three-dimensional polymer network increases, increasing its resistance to enzymatic decomposition at the site of burial. Cross-linked HA has a higher viscosity compared to native hyaluronic acid due to the binding of its chains, which determines longer retention on the corneal epithelium and naturally makes it possible to reduce the frequency of drug instillations. Convincing data were obtained on the effectiveness of the resulting cross-linked hydrogel with non-Newtonian properties in vitro – on cultures of corneal epithelial cells and in vivo – on models of mechanical trauma and chemical burns of the cornea, as well as in animals with torpid corneal ulcers. The clinical effectiveness of cross-linked hyaluronic acid in the treatment of patients with dry eye syndrome of varying severity, including those due to Sjögren’s syndrome, has also been established. The higher effectiveness of cross-linked HA compared to native HA preparations has been convincingly proven. Taking into account the available information, an official drug has been developed based on cross-linked 0.2% hyaluronic acid Ocutears® Hydro+ (Santen).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.