Roll flattening is an important component in the roll stack elastic deformation, which has important influence on controlling of the strip crown and flatness. Foppl formula and semi-infinite body model are the most popular analytical models in the roll flattening calculation. However, the roll flattening calculated by traditional flattening models has a great deviation from actual situation, especially near the barrel edges. Therefore, in order to improve the accuracy of roll flattening, a new model is proposed based on the elastic half plane theory. The calculation formulas of roll flattening are deduced respectively under the assumptions of plane strain and plane stress. Then, the two assumptions are combined through the method of introducing an transition coefficient, and the distribution rules of roll flattening for different rolling force, flattening width, roll length and roll diameter are analyzed by using the FEM analysis software Marc. Regarding the ratio of the length to roll end and the roll diameter as variable to fit the transition coefficient, the new model of roll flattening is established based on the elastic half plane theory. Finally, the transition coefficient is fitted to establish the model. Compared with the traditional models, the new model can effectively improve the calculation deviation in the roll end, which has important significance for accurate simulation of plate shape, especially for the distribution of rolling force between rolls.