The cold galvanizing coatings (CGCs) are used to repair old hot-dip galvanized steel (HDG) in numerous anticorrosion engineering, but poor adhesion of the CGC restricts its large-scale applications in the industries. For the purpose of overcoming the weak adhesion problems of the CGC on HDG, γ-chloropropyl triethoxysilane (CPTES) was added directly into cold galvanizing coatings (CPTES/CGC). Interface characteristics and related corrosion protection behaviors were investigated by the pull-off adhesion test, water contact angle measurements, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), and electrochemical tests. The experimental results revealed that, there is an increase by 19.1% of the CPTES/CGC surface free energy when compared with that of CGC. In addition, Si–O–Si and Si–O–Zn bonds were found in the CPTES/CGC, which indicate new network structures formed inside the CPTES/CGC, between the interface of the CPTES/CGC and HDG substrate, resulting in dry adhesion, wet adhesion, and the cathodic protection time of CPTES/CGC increased by 50% and 200% and 300% respectively compared with the CGC.