Accurate prediction of core losses plays an important role in the design and analysis of flux-switching permanent magnet (FSPM) machines, especially during high-speed and high-frequency operation. Firstly, based on the numerical method, a high-frequency core loss prediction method considering a DC-bias magnetization component and local hysteresis loops as well as the harmonic effect is proposed. Secondly, the magnetizing characteristics of the silicon steel sheet and, consequently, the core loss of the electrical steel used as the core lamination are measured. Then, the loss coefficient of each core loss component is obtained by the data fitting tool. Based on the proposed method, the stator and rotor core losses of a three-phase, 12-stator-slot, and 10-rotor-pole (12/10) FSPM machine with different soft iron materials and driving modes are calculated. Finally, the results of the numerical method are verified by conventional finite element analysis.