The paper presents the result of an application of the GeoWEPP model in a heterogeneous semi‐agricultural catchment located in the northern Italian Apennines mountain range. The objectives were: (a) to evaluate the GeoWEPP model in a heterogeneous catchment in a Mediterranean climate and (b) to examine the effect of digital elevation model grid size on hydrological and sediment yield simulations. The catchment is characterized by large heterogeneity in geology, soil type, vegetation cover and topography. In addition, 10% of its area is occupied by calanchi (badlands), characterized by steep, bare soil and accentuated erosion. Experimental streamflow data were compared with those simulated by GeoWEPP for a period of eight years and the results were evaluated by means of statistical indices, with the analysis of the flow duration curve. Simulated sediment yields were compared with experimental data for one year. The streamflow cumulative annual results were satisfactory with NSE oscillating between 0.40 and 0.83 and RMSE between 1.1 and 2.9 mm. Also, the performance of the model with daily streamflow data was positive (NSE = 0.68 and RMSE = 1.9 mm). The flow duration curve indicated that GeoWEPP could represent the experimental streamflow for fluxes over 1 mm d−1. The model performance for simulation of sediment yield was satisfactory with both digital elevation models of different grid sizes (NSE = 0.84 and 0.87). Indeed, the sensitivity analysis tests of the model showed that there was no statistically significant improvement in the accuracy of the digital elevation model between 10 and 2 m resolution. These results were confirmed for both streamflow as well as sediment yield. Additional sensitivity analysis of other model parameters performed on the entire catchment and badlands hillslopes showed that bedrock hydraulic conductivity primarily affected the model in both settings. Copyright © 2014 John Wiley & Sons, Ltd.