Abstract-A method for automatic generation of non-blocking controllers that generate collision-free flexible manufacturing cells is presented in this paper. Today, industry demands on flexible production sometimes require significant changes in location, orientation and configuration of industrial robots and other moving devices, when new products are introduced. All these changes pose a threat to the devices to collide while sharing workspace. Although the use of simulation software to facilitate these changes is gaining popularity, the coordination of collisionfree flexible manufacturing systems is still at best a semi-manual trial-and-error procedure. To avoid this, a formal model of the operations in a manufacturing system is generated, and for each operation state a corresponding 3D simulation shape is created. A collision-free system is then achieved by considering pairs of colliding shapes as forbidden states. The automatic generation also includes a synthesis procedure, where a non-blocking and controllable supervisor is generated based on guard generation. The guards are computed by binary decision diagrams, which means that complex systems can be handled, still generating comprehensible restrictions that are easily included in PLC-code.