Polycyclic aromatic hydrocarbons (PAHs) are a family of toxicants that are ubiquitous in the environment. These contaminants generate considerable interest, because some of them are highly carcinogenic in laboratory animals and have been implicated in breast, lung, and colon cancers in humans. These chemicals commonly enter the human body through inhalation of cigarette smoke or consumption of contaminated food. Of these two pathways, dietary intake of PAHs constitutes a major source of exposure in humans. Although many reviews and books on PAHs have been published, factors affecting the accumulation of PAHs in the diet, their absorption following ingestion, and strategies to assess risk from exposure to these hydrocarbons following ingestion have received much less attention. This review, therefore, focuses on concentrations of PAHs in widely consumed dietary ingredients along with gastrointestinal absorption rates in humans. Metabolism and bioavailability of PAHs in animal models and the processes, which influence the disposition of these chemicals, are discussed. The utilitarian value of structure and metabolism in predicting PAH toxicity and carcinogenesis is also emphasized. Finally, based on intake, disposition, and tumorigenesis data, the exposure risk to PAHs from diet, and contaminated soil is presented. This information is expected to provide a framework for refinements in risk assessment of PAHs from a multimedia exposure perspective.