Recently new molecular systems based on the pyrene moiety were developed for photovoltaic applications. Here we present the results of a quantum chemical study focused on the effects induced by some different substituents on the electronic properties of pyrene, to obtain general hints for the molecular design of new pyrene-based systems. In particular, a series of electron-donating (hydroxy, amino, acetylamino) and electron-withdrawing (cyano, carbamoyl, formyl, ethynyl, ethenyl) groups were considered. Furthermore, in addition to the single pyrene molecule, two pyrene units linked by ethenylene, ethynylene, 2,5-thienylene, and ethynylene-p-phenylene containing chains of different lengths were taken into account. For all of the model structures presented, the ground state geometries have been optimized using the density functional approach, while the vertical transition energies were calculated using the time-dependent density functional theory. We will show that the tuning of the lowest electronic excitation energy (i.e., the HOMO-LUMO energy gap) as well as the localization of the spatial distributions of the frontier molecular orbitals (i.e., the nature of the electron-hole pair, generated by photon absorption) can be obtained through the analysis of the pyrene frontier molecular orbitals. This approach allows to evaluate the most suitable position of the substituents on the pyrene moiety giving rise to enhanced electronic effects also in function of their electronic nature. In this way, pyrene-structures with tailored electronic properties could be modeled. Our screening shows that promising candidates for photovoltaic applications could be molecular structures formed by two pyrene units joined/linked by a short conjugated bridge containing double or triple bonds (henceforth pyrene-linked dimers). As far as the single pyrene units are considered, the most significant reduction of the transition energy of the lowest optical electronic excitation is obtained with disubstituted pyrenes with push-pull character.