AIM:To observe the effects of Kupffer cells on hepatic drug metabolic enzymes.
METHODS:Kunming mice were ip injected with GdCl 3 10, 20, 40 mg/kg to decrease the number and block the function of kupffer cells selectively. The contents of drug metabolic enzymes, cytochrome P450, NADPH-cytochrom C redutase (NADPH-C), aniline hydroxylase (ANH), aminopyrine Ndemethylase (AMD), erythromycin N-demethylase (EMD), and glutathione s-transferase (mGST) in hepatic microsome and S9-GSTpi, S9-GST in supernatant of 9 000 g were accessed 1 d after the injection. The time course of alteration of drug metabolic enzymes was observed on d 1, 3, and 6 treated with a single dose GdCl 3 . Mice were treated with Angelica sinensis polysaccharides (ASP) of 30, 60, 120 mg/kg, ig, qd ×6 d, respectively and the same assays were performed. RESULTS: P450 content and NADPH-C, ANH, AMD, and EMD activities were obviously reduced 1 d after Kupffer cell blockade. However, mGST and S9-GST activities were significantly increased. But no relationship was observed between GdCl 3 dosage and enzyme activities. With single dose GdCl 3 treatment, P450 content, NADPH-C, and ANH activities were further decreased following Kupffer cell blockade lasted for 6 d, by 35.7%, 50.3%, 36.5% after 3 d, and 57.9%, 57.9%, 63.2% after 6 d, respectively. On the contrary, AMD, EMD, mGST, and S9-GST activities were raised by 36.5%, 71.9%, 23.1%, 35.7% after 3 d, and 155%, 182%, 21.5%, 33.7% after 6 d, respectively. Furthermore, the activities of drug metabolic enzymes were markedly increased after 30 mg/kg ASP treatment, and decreased significantly after 120 mg/kg ASP treatment. No change in activity of S9-GSTpi was observed in the present study.