Soil respiration is a major component of the global carbon budget and Mediterranean ecosystems have usually been studied in locations with shallow soils, mild temperatures, and a prolonged dry season. This study investigates seasonal soil respiration rates and underlying mechanisms under wetter, warmer, and more fertile conditions in a Mediterranean cork oak forest of Northern Tunisia (Africa), acknowledged as one of the most productive forests in the Mediterranean basin. We applied a soil respiration model based on soil temperature and relative water content and investigated how ecosystem functioning under these favorable conditions affected soil carbon storage through carbon inputs to the soil litter. Annual soil respiration rates varied between 1774 gC m −2 year −1 and 2227 gC m −2 year −1 , which is on the highest range of observations under Mediterranean climate conditions. We attributed this high soil carbon flux as a response to favorable temperatures and soil water content, but this could be sustained only by a small carbon allocation to roots (root/shoot ratio = 0.31-0.41) leading to a large allocation to leaves
OPEN ACCESSForests 2015, 6 2919 with a multiannual leaf production, enhanced annual twig elongation (11.5-28.5 cm) with a reduced leaf life span (<1 year) maintaining a low LAI (1.68-1.88) and generating a high litterfall (386-636 gC m −2 year −1 ). Thus, the favorable climatic and edaphic conditions experienced by these Mediterranean cork oak forests drove high soil respiration fluxes which balanced the high carbon assimilation leading to a relatively small overall contribution (10.96-14.79 kgC m −2 ) to soil carbon storage.