Background: Arteriovenous fistulae (AVF) are the preferred mode of vascular access for hemodialysis. Before use, AVF remodel by thickening and dilating to achieve a functional conduit via an adaptive process characterized by expression of molecular markers characteristic of both venous and arterial identity. Although signaling via EphB4, a determinant of venous identity, mediates AVF maturation, the role of its counterpart EphrinB2, a determinant of arterial identity, remains unclear. We hypothesize that EphrinB2 signaling is active during AVF maturation and may be a mechanism of venous remodeling. Methods: Aortocaval fistulae were created or sham laparotomy was performed in C57Bl/6 mice, and specimens were examined on Days 7 or 21. EphrinB2 reverse signaling was activated with EphB4-Fc applied periadventitially in vivo and in endothelial cell culture medium in vitro. Downstream signaling was assessed using immunoblotting and immunofluorescence. Results: Venous remodeling during AVF maturation was characterized by increased expression of EphrinB2 as well as Akt1, extracellular signal-regulated kinases 1/2 (ERK1/ 2), and p38. Activation of EphrinB2 with EphB4-Fc increased phosphorylation of Eph-rinB2, endothelial nitric oxide synthase, Akt1, ERK1/2, and p38 and was associated with increased diameter and wall thickness in the AVF. Both mouse and human endothelial cells treated with EphB4-Fc increased phosphorylation of EphrinB2, endothelial nitric oxide synthase, Akt1, ERK1/2, and p38 and increased endothelial cell tube formation and migration. Conclusions: Activation of EphrinB2 signaling by EphB4-Fc was associated with adaptive venous remodeling in vivo while activating endothelial cell function in vitro.