The present study investigated the function of p13, a mitochondrial protein of human T-cell leukemia virus type 1 (HTLV-1). Although necessary for viral propagation in vivo, the mechanism of function of p13 is incompletely understood. Drawing from studies in isolated mitochondria, we analyzed the effects of p13 on mitochondrial reactive oxygen species (ROS) in transformed and primary T cells. In transformed cells (Jurkat, HeLa), p13 did not affect ROS unless the cells were subjected to glucose deprivation, which led to a p13-dependent increase in ROS and cell death. Using RNA interference we confirmed that expression of p13 also influences glucose starvation-induced cell death in the context of HTLV-1-infected cells. ROS measurements showed an increasing gradient from resting to mitogenactivated primary T cells to transformed T cells (Jurkat). Expression of p13 in primary T cells resulted in their activation, an effect that was abrogated by ROS scavengers. These findings suggest that p13 may have a distinct impact on cell turnover depending on the inherent ROS levels; in the context of the HTLV-1 propagation strategy, p13 could increase the pool of "normal" infected cells while culling cells acquiring a transformed phenotype, thus favoring lifelong persistence of the virus in the host. (Blood. 2010;116(1): 54-62)
IntroductionHuman T-cell leukemia virus type 1 (HTLV-1) is a complex retrovirus that infects an estimated 20 million people worldwide. HTLV-1 is the causative agent of adult T-cell leukemia/lymphoma (ATLL), an aggressive neoplasm of mature CD4ϩ T cells that is refractory to current therapies. ATLL arises in approximately 3% of HTLV-1-infected persons and is preceded by a decades-long clinical latency.Many aspects of HTLV-1 replication, persistence, and pathogenesis remain incompletely understood (reviewed in Verdonck et al 1 ). Studies so far have been focused primarily on the transcriptional activator Tax, which is essential for expression from the viral promoter, and the posttranscriptional factor Rex, which is required for expression of incompletely spliced viral transcripts. Tax also plays a critical role in T-cell transformation through its ability to deregulate the expression of a vast array of cellular genes and interfere with cell-cycle checkpoints, producing major alterations in cell proliferation and survival and promoting genetic instability (reviewed in Lairmore et al 2 ). Indeed, expression of Tax in mouse thymocytes is sufficient for induction of T-cell leukemia/ lymphoma. 3 However, the contrast between the powerful oncogenic properties of Tax and the low prevalence and long latency of ATLL suggests the existence of mechanisms that limit the transforming potential of the virus and favor its lifelong persistence in the host in the absence of disease.Recent studies indicate that the viral accessory proteins p12, p21, p30, HBZ, and p13 may also contribute to HTLV-1 replication and pathogenesis (reviewed in Nicot et al 4 ). The present study is focused on p13, an 87-amino acid accessory prote...