Spermidine and spermine, are endogenous polyamines (PAs) that regulate cell growth and modulate the activity of numerous ion channel proteins. In particular, intracellular PAs are potent blockers of many different cation channels and are responsible for strong suppression of outward K + current, a phenomenon known as inward rectification characteristic of a major class of K IR K + channels. We previously described block of heterologously expressed voltage-gated Na + channels (Na V ) of rat muscle by intracellular PAs and PAs have recently been found to modulate excitability of brain neocortical neurons by blocking neuronal Na V channels. In this study, we compared the sensitivity of four different cloned mammalian Na V isoforms to PAs to investigate whether PA block is a common feature of Na V channel pharmacology. We find that outward Na + current of muscle (Na V 1.4), heart (Na V 1.5), and neuronal (Na V 1.2, Na V 1.7) Na V isoforms is blocked by PAs, suggesting that PA metabolism may be linked to modulation of action potential firing in numerous excitable tissues. Interestingly, the cardiac Na V 1.5 channel is more sensitive to PA block than other isoforms. Our results also indicate that rapid binding of PAs to blocking sites in the Na V 1.4 channel is restricted to access from the cytoplasmic side of the channel, but plasma membrane transport pathways for PA uptake may contribute to long-term Na V channel modulation. PAs may also play a role in drug interactions since spermine attenuates the use-dependent effect of the lidocaine, a typical local anesthetic and anti-arrhythmic drug.