Abstract. Sponges [phylum Porifera] form the basis of the metazoan kingdom and represent the evolutionary earliest phylum still extant. Hence, as living fossils, they are the taxon closest related to the hypothetical ancestor of all Metazoa, the Urmetazoa. Until recently, it was still unclear whether sponges are provided with a defined body plan. Only after the cloning, expression and functional studies of characteristic metazoan genes, could it be demonstrated that these animals comprise the structural elements which allow the sponge cells to organize themselves according to a body plan. Adhesion molecules involved in cell-cell and cell-matrix interactions have been identified. Among the cell-cell adhesion molecules the aggregation factor (AF) is the prominent particle. It is composed of a core protein that is associated with the adhesion molecules, a 36 kDa as well as a 86 kDa polypeptide. A galee tin functions as a linker of the AF to the cell-membrane-associated receptor, the aggregation receptor (AR). The most important extracellular matrix molecules are collagen-and fibronectin-like molecules. These proteins interact with the cellmembrane receptors, the integrins. In addition, a neuronal receptor has been identified, which -together with the identified neuroactive molecules -indicate the existence of a primordial neuronal network already in Porifera. The primmorph system, aggregated cells that retain the capacity to proliferate and differentiate, has been used to demonstrate that a homeobox-containing gene, Iroquois, is expressed during canal formation in primmorphs. The formation of a body plan in sponges is supported by skeletal elements, the spicules, which are composed in Demospongiae as well as in Hexactinellida of amorphous, noncrystalline silica. In Demospongiae the spicule formation is under enzymic control of silicatein. Already at least one morphogen has been identified in sponges, myotrophin, which is likely to be involved in the axis formation. Taken together, these elements support the recent conclusions that sponges are not merely non organized cell aggregates, but already complex animals provided with a defined body plan.