To many, high-frequency (HF) radio communications is obsolete in this age of longdistance satellite communications and undersea optical fiber. Yet despite this, the HF band is used by defense agencies for backup communications and spectrum surveillance, and is monitored by spectrum management organizations to enforce licensing. Such activity usually requires systems capable of locating distant transmitters, separating valid signals from interference and noise, and recognizing signal modulation. Our research targets the latter issue. The ultimate aim is to develop robust algorithms for automatic modulation recognition of real HF signals. By real, we mean signals propagating by multiple ionospheric modes with co-channel signals and non-Gaussian noise. However, many researchers adopt Gaussian noise for their modulation recognition algorithms for the sake of convenience at the cost of accuracy. Furthermore, literature describing the probability density function (PDF) of HF noise does not abound. So we describe a simple empirical technique, not found in the literature, that supports our work by showing that the probability density function (PDF) for HF noise is generally not Gaussian. In fact, the probability density function varies with the time of day, electro-magnetic environment, and state of the ionosphere.