The increased incidence of chronic diseases related to altered metabolism has become a social and medical concern worldwide. Cancer is a chronic and multifactorial disease for which, together with genetic factors, environmental factors are crucial. According to the World Health Organization (WHO), up to one third of cancer-related deaths could be prevented by modifying risk factors associated with lifestyle, including diet and exercise. Obesity increases the risk of cancer due to the promotion of low-grade chronic inflammation and systemic metabolic oxidative stress. The effective control of metabolic parameters, for example, controlling glucose, lipid levels, and blood pressure, and maintaining a low grade of chronic inflammation and oxidative stress might represent a specific and mechanistic approach against cancer initiation and progression. Miracle berry (MB) (Synsepalum dulcificum) is an indigenous fruit whose small, ellipsoid, and bright red berries have been described to transform a sour taste into a sweet one. MB is rich in terpenoids, phenolic compounds, and flavonoids, which are responsible for their described antioxidant activities. Moreover, MB has been reported to ameliorate insulin resistance and inhibit cancer cell proliferation and malignant transformation in vitro. Herein, we briefly summarize the current knowledge of MB to provide a scientific basis for its potential use as a supplement in the management of chronic diseases related to altered metabolism, including obesity and insulin resistance, which are well-known risk factors in cancer. First, we introduce cancer as a metabolic disease, highlighting the impact of systemic metabolic alterations, such as obesity and insulin resistance, in cancer initiation and progression. Next, as oxidative stress is closely associated with metabolic stress, we also evaluate the effect of phytochemicals in managing oxidative stress and its relationship with cancer. Finally, we summarize the main biological activities described for MB-derived extracts with a special focus on the ability of miraculin to transform a sour taste into a sweet one through its interaction with the sweet taste receptors. The identification of sweet taste receptors at the gastrointestinal level, with effects on the secretion of enterohormones, may provide an additional tool for managing chronic diseases, including cancer.